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ABSTRACT  

Reliable, real-time heart and respiratory rates are key vital signs used in 

evaluating the physiological status in many clinical and non-clinical settings.  

Measuring these vital signs generally requires superficial attachment of 

physically or logistically obtrusive sensors to subjects that may result in skin 

irritation or adversely influence subject performance.  Given the broad 

acceptance of ingestible electronics, we developed an approach that enables vital 

sign monitoring internally from the gastrointestinal tract.  Here we report initial 

proof-of-concept large animal (porcine) experiments and a robust processing 

algorithm that demonstrates the feasibility of this approach. Implementing vital 

sign monitoring as a stand-alone technology or in conjunction with other 

ingestible devices has the capacity to significantly aid telemedicine, optimize 

performance monitoring of athletes, military service members, and first-

responders, as well as provide a facile method for rapid clinical evaluation and 

triage. 
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INTRODUCTION 
 

Heart rate (HR) and respiratory rate (RR) are essential vital signs for evaluating the 

physiologic status of children and adults in clinical and non-clinical settings.  These two 

vital signs constitute the initial measurements in acutely ill patients and provide the 

basis for clinical severity stratification [1,2] as well as markers of response to life-saving 

cardiopulmonary resuscitation [3].  Additionally, HR and RR serve as non-diagnostic 

indicators of performance status in service members [4,5] and in performance athletes.   

 

There are numerous methods for monitoring HR and RR, but most require the 

attachment of superficial sensors to the body.  HR can be monitored using electrical 

methods such as electrocardiogram (ECG), optical methods such as 

photoplethysmography (PPG, pulse oximetry), or mechanical methods such as 

ballistocardiography.  RR can be monitored directly using trans-thoracic 

plethysmography and expired gas analysis approaches, or indirectly using advanced 

processing methods applied to PPG [6].  All of these methods have some limitations, as 

they may cause patient discomfort by being obtrusive or irritating the skin[7,8], and 

many methods cannot be used reliably in high physical activity contexts where motion 

may corrupt the signal.  Furthermore, some key vital signs, namely core temperature, 

must be measured internally, and thus an ingestible device can provide the best signal 

quality.  Over the last decade, ingestible medical devices have gained broad 
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acceptance; for example, ingestible devices can measure temperature [9,10], and video 

capsule endoscopy is widely used for diagnosis of gastrointestinal (GI) pathology [11].  

We hypothesized that vital sign monitoring from within the GI tract would be a safe and 

effective alternative to existing superficial clinical monitoring systems, while overcoming 

some of their limitations.  Moreover, we selected miniature components in our design to 

ensure that the ultimate size of ingestible PSM devices is even smaller than video 

capsule endoscopes while maintaining other safety standards. 

 

We present initial proof-of-concept experiments in a porcine model to show that HR and 

RR can be measured simultaneously and with high fidelity from within the GI tract using 

a single acoustic waveform.  Using an endoscopically-guided miniature electret 

microphone, we measured acoustic data along the GI tract from the mouth to the colon.  

We evaluated the impact device contact with GI tissue and previously ingested food had 

on acoustic data quality.  We then developed a robust signal processing algorithm to 

analyze these raw waveforms.  Our results support that an ingestible, ultra-miniature 

acoustic monitoring device could accurately measure vital signs.  This technology is 

likely to be adaptable to a wide range of clinical and non-clinical uses.   

 

RESULTS 

 

Data Collection and Signal Processing 
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We performed physiological monitoring experiments in six sedated Yorkshire pigs using 

an endoscopically-guided electret microphone to collect acoustic waveforms along the 

GI tract.  We concurrently recorded physiological waveforms using a standard 

veterinary vital signs monitor, including external 3-lead ECG, PPG, capnography (via 

expired breath CO2 analysis), and a superficial microphone positioned directly above 

the heart.  A total of ~407 minutes each of HR and RR data were collected from all 

segments of GI tract over the course of four experimental days in six Yorkshire pigs.  

Specifically, 80.3, 66.7, 149.7, 54.3, and 60.3 minutes of raw audio data were collected 

from the oral cavity, esophagus, stomach, proximal duodenum and rectum respectively.  

A schematic of our experimental setup and a representative dataset is shown in Figure 

1. 

 

Raw waveforms were processed using a phonocardiogram HR estimation algorithm [12] 

modified to enable simultaneous extraction of HR and RR from a single raw waveform 

and with processing steps amenable to implementation on a microcontroller (such as a 

Texas Instruments MSP430). The raw waveform is split and copied into a HR and RR 

track, and each is processed with parameters characteristic of each signal [13-15] (see 

Figure 2).  The first processing stage consists of an emulated analog front end, namely 

resistor-capacitor (RC) based bandpass filters.  A 10-40 Hz anti-aliasing filter is applied 

to capture the majority of signal energy yet avoid significant aliasing from downsampling 

(see spectrogram in Figure 3).  The second and third stages increase the signal-to-

noise ratio (SNR) by successively computing the signal’s energy and its average 

magnitude difference function (AMDF).  The final stage uses a robust valley-detection 
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algorithm for estimating HR and the RR from the AMDF.  All processing in this study 

was performed on non-overlapping 20s data frames during which a single average HR 

and RR is reported.  A 20s frame duration was chosen as a compromise between 

reduced latency and a sufficient window length to encompass more than one breath.  

There were 1228 and 1219 total HR and RR frames, respectively.  Additional signal 

processing details may be found in the Methods section. 

 

HR concordance with external PPG is very strong in the esophagus, stomach (including 

with and without food and tissue contact), and duodenum: the HR is detected within 5 

bpm 97%, 95%, 98% of the time, respectively.  The RR is detected within 5 breaths per 

minute 84%, 82%, 88% of the time in these locations, though many errors in these 

locations are due to the AMDF algorithm’s valley-finding which very predictably doubles 

the respiratory rate (see Discussion below).   Resting respiratory and heart rate in swine 

ranges are noted between 32-58 breaths/min and 70-120 beats/min respectively[16].  

Our 10%:90% quantiles for respiratory and heart rate were 15:43 and 57:107 bpm.  

While we did measure an acoustic waveform in the mouth and colon, agreement with 

standard vital sign monitoring was poor (see detailed analysis in Figure 4 and 

Discussion below).   We measured ambient operating room noise during data collection 

which averaged ~70dB, and peaked at ~80dB. 

 

Vital sign monitoring in heterogeneous GI environments 
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An ingestible monitoring device must be able to function under a variety of common GI 

environmental conditions, including fasted and fed states and device contact with tissue.  

To demonstrate our system’s applicability to these heterogeneous GI environments, we 

measured waveforms in the gastric content (either solid, liquid, or in a gas bubble, for a 

total of 39.7 minutes of data collected from the six animals), and in contact with the 

gastric wall (approximately 110 minutes of data collected from the six animals, both in 

the proximal and distal thirds of the stomach).  All these areas demonstrated HR and 

RR values in good agreement with external vital sign monitor values. The HR median 

percent error was noted in the proximal third, a gas bubble, gastric pool and distal third 

as 0%, 10%, 0% for each location.  For RR, the median percent error was 4.3%, 38.6%, 

and 6.7% in the proximal third, gas bubble, and distal third.  Additional median percent 

errors are noted in Figure 5. 

 

DISCUSSION 
 

Physiological status monitoring is central to the clinical evaluation of patients and 

increasingly used in non-clinical settings for safety (for example, military service 

members and first-responders) and performance monitoring (such as professional 

athletes).  Though significant development has focused on low-profile external vital sign 

monitoring systems, extended monitoring in non-wearable formats has seen little 

development.  Wearable systems can be associated with skin irritation from allergic 

responses or repetitive abrasion during extended use in high physical activity settings, 

as well as from constriction, and all are subject to the logistical burdens of user 
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compliance.  Furthermore, wearable systems are not always capable of directly 

measuring some key physiological variables externally, namely core temperature.   

 

To address these limitations, we have established a new technique for physiologic 

status monitoring using technologies and methods compatible with ingestion.  Our 

method is capable of sensing primary vital signs (HR and RR) in a heterogeneous set of 

environments in the GI tract using a single sensing modality.  We have demonstrated 

measuring HR and RR using this technique in vivo in a large animal model at various 

locations along the GI tract.  Signal fidelity was maintained with and without microphone 

tissue contact, as well as within solid and liquid food material.  Our signal processing 

algorithm robustly detected HR and RR in excellent agreement with measurement from 

standard external vital signs monitors (PPG and capnography) in the majority of the GI 

tract. 

 

Ingestible devices have a number of advantages over wearable systems.  The 

ergonomic profile of an ingestible-sized device is minimal; unless a patient has a 

specific contra-indication for such a device (bowel obstruction, etc.), the user will remain 

asymptomatic for the duration of monitoring.  Such small devices will be similar in size 

to a bolus of food or pharmaceutical capsule (the largest commonly used size, 000, is 

~2.5cm long x 1cm diameter) and will remain free-floating in the GI tract; with an 

appropriate material choice for the device capsule, this will minimize any abrasive 

irritation of the GI mucosa.  There is also the possibility of implementing this sensor 

concept as a dissolvable electronic device, thereby eliminating contra-indications.  
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Furthermore, ingestible electronic systems offer the possibility for in vivo, yet non-

implantable medical devices able to monitor difficult-to-measure variables (such as core 

temperature) simultaneously with HR and RR.  Burdens associated with implantable 

devices, namely the need for a surgeon to introduce the device and potential negative 

health outcomes (infection, fibrosis), have prevented their wide adoption, and which 

ingestible devices overcome.  

 

Our signal processing algorithm produced accurate HR estimates for the majority of the 

GI tract.  Overall HR performance is very strong in the esophagus, stomach, and 

duodenum: concordance with external PPG is detected within 5 bpm 97%, 95%, 98% of 

the time, respectively.  While we did measure an acoustic waveform in the mouth and 

colon, agreement with standard vital sign monitoring was poor.  Because of the 

excellent performance of the sensor and algorithm proximal to the heart and lungs, we 

suspect these sites were too distant from the heart and lungs for the sensitivity of the 

particular microphone chosen (-45dB ±4dB).  Higher sensitivity electret or MEMS 

microphones may be chosen, but must also be small enough for ingestion and have 

sufficient frequency sensitivity (from 10 to 40 Hz for both HR and RR).   

 

Percent error histograms (Figure 4) show similar empirical distributions among 

anatomical locations when there are sufficient samples.  Namely, measurement error is 

concentrated near 0%, 50%, and 100%.  This consistent and repeatable distribution 

results from the AMDF valley-finding algorithm triggering on incorrect valleys.  With no 

noise, the first AMDF function valley represents the fundamental period of the heart rate 
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or breathing rate; however, there are additional valleys at multiples of this fundamental 

period due to the periodicity of the signal, small valleys due to incomplete removal of 

heart rate modulation in the respiratory track, and spurious smaller valleys due to noise.  

For example, a doubled pitch period yields errors of 50%.  Any detections on spurious 

valleys before the first true valley result in over estimations of the parameter of interest; 

if these estimates occur at less than half the true period, the error value becomes > 

100%, which are clustered together in Figure 4.  The harmonic nature of the AMDF 

function and its corresponding error modes are a recognized failing of parameter 

estimation from a periodic waveform such as the AMDF.  Potential improvements in 

future work include implementing more robust period estimation methods such as 

Extended AMDF [17], normalized autocorrelation, Comb transformation or cepstral 

estimation algorithms with a period tracker (such as a Kalman filter), or a combination of 

such methods. 

 

To statistically measure our algorithm’s performance, we performed an equivalency test 

between HR and RR derived from our acoustic approach and the gold-standard value 

based upon the median difference between matched pairs.  We similarly performed a 

test for correlation significance between acoustic estimates and gold-standard 

values.  (See Methods for details on both.)  For HR, the median error difference is 

equivalent to 0 (within +/- 5bpm at the 95% confidence level) for the esophagus, 

proximal third of stomach, distal third of stomach, gastric pool, stomach with food, and 

duodenum.  Furthermore, our acoustic estimates are significantly positively correlated 

(at the 95% level) for each of these locations except the stomach with food and 
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duodenum.  Median significant correlations for HR are 1.0, 0.53, 0.79, and 0.61 for the 

esophagus, proximal third of stomach, distal third of stomach, and gastric pool, 

respectively. 

  

For RR, the median error difference is equivalent to 0 (within +/- 5bpm at the 95% 

confidence level) for the esophagus, proximal stomach, and stomach with food, but we 

were unable to demonstrate significant correlation. As mentioned above, the full 

histograms (see Figure 4) imply particular susceptibility of our algorithm to pitch period 

doubling and low signal quality which can be mitigated with filtering above the 20s frame 

level as well as implementing signal-to-noise measures on the raw acoustic data and 

AMDF output.  To assess algorithm output performance improvements if these issues 

were addressed, we removed respiration rate pairs with absolute percent errors greater 

than 35% (that is, data likely to be excluded using filtering and signal-to-noise 

measures) and performed our equivalency and correlation tests again.  With this new 

limited dataset, all locations have a median difference of 0 and have significantly 

correlated acoustic and gold standard estimates (median correlations of at least 0.90 for 

mouth, esophagus, proximal and distal third of stomach, gastric pool, duodenum, and 

rectum, and 0.59 for stomach with food). 

 

 

One considerable limitation to our proposed system is that GI transit time varies 

considerably among healthy individuals [18].  Our initial data suggests that our chosen 

components and processing algorithm yields best results in the upper GI tract (from the 
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esophagus to the small intestine), and for some individuals, this residence time may be 

12h or even shorter. However, this duration of monitoring is similar with many other 

ambulatory physiological monitoring systems, and this one of the same limitations of the 

existing “gold standard” ingestible core temperature monitoring solution (the 

VitalSense™ capsule system [9]).  Another potential limitation is the effect of ambient 

noise pollution on acoustic signal fidelity.  Reassuringly, data collected here appeared 

robust in spite of room noise contributions ranging from 70 to 80 dB.  Noise pollution, 

either from ambient or internal sources, may also be addressed using more robust 

signal processing algorithms, such as match filtering for known physiological acoustic 

signatures.  Further experimentation in various simulated and environmental contexts is 

required to fully characterize signal fidelity using this technology as well as inter-

individual variability to inform adaptive on-board algorithms of future devices. 

 

Extended vital sign monitoring via ingestible devices could be applied in emergency 

triage settings in the field, for post-operative patients, outpatient telemedicine 

monitoring, and performance measurements (such as in professional athletes and 

military service members).  In this study we measured respiratory and heart rates 

ranging from 6-56 breaths/min and 48-128 beats/min with high correlation to standard 

monitoring devices.  Further testing to the extremes encountered in active (i.e., 

exercising) or pathophysiologic states will be required to fully delineate the limitations of 

this technology for monitoring, but are the focus of current hardware and algorithm 

development efforts.  Continuous auscultation, when coupled with more advanced 

signal processing algorithms focusing on anomaly detection or machine learning-based 
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classifiers, could provide advanced diagnostic tools for pulmonary (chronic obstructive 

pulmonary disease, asthma, etc.) or cardiac (arrhythmias, stenosis, etc.) pathologies.  

Future vital sign device designs may even include coupling with in situ treatment 

delivery devices to provide remote, automated systems for rapid diagnosis and 

treatment of high-risk patients. 

 

 

METHODS 

 

Porcine Model Vital Sign Monitoring Experiments 

 

In vivo porcine studies were performed in 6 Yorkshire pigs weighing between 50 and 

65kg.  All animals were female and between 6-7 months of age.  For evaluations free of 

food material, the pigs received a liquid diet for 48 hours prior to the procedure.  

Otherwise animals were fasted overnight.  On the day of the procedure, the morning 

feed was held and the animal was sedated and intubated. Following induction of 

anesthesia with intramuscular injection of Telazol (tiletamine/zolazepam) 5mg/kg, 

xylazine 2mg/kg, and atropine 0.05 mg/kg, the pigs were intubated and maintained on 

isoflurane 1-3%. An endoscope guiding a miniature electret microphone (PUI Audio, 

part # POM-2245L-C10-R) was introduced in the esophagus and recordings taken from 

the mouth, esophagus, stomach, and duodenum with and without tissue contact.  

Additionally an enema was administered and recordings were taken from the colon. All 

procedures were conducted in accordance with protocols approved by the 
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Massachusetts Institute of Technology Committee on Animal Care Protocol #0113-009-

16.  After data collection, all animals were returned to the animal colony and used in 

other experimental protocols. 

 

Raw acoustic data was sampled at 44.1 kHz. We built a custom level-shifting device 

(shifting from 0-5V to 0-1.6V) capable of interfacing with existing medical monitoring 

equipment attached to the animal (Surgivet Advisor™, Smiths Medical) and with a multi-

channel A/D converter (Roland Octa-Capture™) capable of handling all 5 input streams 

(ECG, PPG, capnography, internal and external electret microphones) and outputting 

via a USB connection to a laptop running Audacity audio collection software.   

 

Signal Processing Algorithm 

 

Our algorithm was specifically designed for implementation in a low size, weight, and 

power device.  First, the 44.1 kHz signal is segmented into 20s segments and copied 

into two parallel processing tracks; one track ultimately estimates HR, and the other RR. 

All acoustic data is highpass filtered with a 100dB attenuation Chebyshev Type II filter 

with a transition band from 5-10Hz to eliminate motion artifacts caused by mechanical 

compressions rather than acoustic vibrations.  This filter is digitally implemented and 

would not necessarily be part of the final design. The signal in both HR and RR tracks is 

filtered with an emulated analog RC bandpass filter constructed from a low pass filter 

with a 3 dB cutoff frequency at 40 Hz and a high pass filter with a 3 dB cutoff frequency 

at 10 Hz.  Finally a 60Hz comb filter is applied to reduce line noise and its harmonics.  
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Both signals are then decimated by a factor of 450 to a sampling rate of 98 Hz to 

emulate minimal data collection, storage, and processing capabilities. 

 

The analog filtered signal, , is normalized to a maximum amplitude of -1 or 1 and is 

denoted .  Then, a sliding window over the 20 second frame computes the 

energy, , according to Equation 1 below.  The HR track uses a window of  = 

25 samples or approximately 0.25 seconds, and the RR track uses a window of  

= 98 samples or 1 second.  

 

If	1 			

												 	
1
⋅ 	 	

else	if	 	

											
1

⋅ 	 		

Equation 1.  Energy feature calculation. 

 

The average magnitude difference function (AMDF) computes a waveform  similar 

to the output from an autocorrelation operation, but without using any multiplications 

[19] (again, chosen in anticipation of implementing in ultra-low power and size 

hardware).  The AMDF slides the signal over itself and computes the average difference 

between the overlapped segments (Equation 2).  When the two segments are similar, 

the AMDF outputs a low value, and when they are dissimilar, the AMDF outputs a high 



	

Page 15 of 28	

value.  The AMDF increases the signal to noise ratio by exploiting the periodicity of the 

HR and the RR waveforms over the frame.  is the number of samples in the frame of 

the energy signal ( 1960, corresponding to 20 seconds). d varies from 0 to 196 (2 

seconds) or 0 to 980 (10 seconds) for HR or RR estimation, respectively, because 

normal cardiac  and respiration cycles have periods less than these upper bounds. 

 

 

 

 

	 	 	 	

1 	
1
⋅ | |	 

where 0,1,2, . . , . 

Equation 2.  Average magnitude difference function. 

 

For the RR track only, the AMDF output is further low pass filtered with a 1 second 

hamming window.  This reduces the likelihood that high frequency heart rate modulation 

will be detected instead of the low frequency respiratory modulation.  The final stage in 

each track is the HR and RR estimation from the AMDF function.  Vital sign estimation 

reduces to a valley-detection-in-noise problem because the true HR or RR period will be 

the first significant dip at which the AMDF becomes close to zero (though not counting 

the AMDF value at zero lag, as this has an AMDF value of exactly zero since the two 

segments being subtracted are identical.)  As the segments slide over each, the heart 
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beat or breath that was well aligned in each segment becomes misaligned, and the 

AMDF value increases.  However, eventually the segments will have slid far enough 

apart that the original heart beat or breath will overlap with the second heart beat or 

breath in the frame.  Because of the consistency in heart rate and breath morphology as 

an output from the energy stage, the AMDF function will compute a small, non-zero 

value before increasing once again.  If several heart beats are within a frame, the AMDF 

function will appear to have a ripple or sinusoidal pattern as the first heart beat overlaps 

each of the successive heart beats.  The ripple period is the period of the vital sign to be 

estimated. 

 

Data analysis & Statistical Measures 

We compared the results from the signal processing algorithm above with the “gold-

standard” PPG and capnography signals to determine algorithm performance.  Data 

from these gold-standard methods was resampled to 98 Hz using MATLAB’s 

(MathWorks, Natick MA) resample function, which applies an anti-aliasing filter, and 

then processed through the AMDF and valley detection stages as described earlier.   

Only HR values between 40 and 200 beats per minute and RR values below 60 breaths 

per minute were accepted as physiologically reasonable. In the rare event (10/1229 

frames for RR and 6/1234 frames for HR) that the valley finding function did not return 

an estimate from the acoustic data but the gold standard estimate was valid, the frame 

was excluded from analysis. For each 20s segment, an absolute percent error is 

calculated, defined as  

	 	 100	 	 
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where Ratealgorithm is the result of the method above, and Rategold-standard is the rate 

derived from PPG or capnography for HR and RR, respectively.  Histograms of these 

values, normalized by the total counts for each anatomic site, are reported in Figure 4 

and the median presented in Figure 5.   

 

We used two methods to statistically determine output similarity between the gold-

standard methods (PPG and capnography) and our acoustic approach. The first was a 

median difference between matched pairs for repeated samples equivalency test, which 

checks for bias while still being robust to outlier failures from period doubling; the 

second was a test for correlation significance, which quantitatively assesses whether 

our acoustic based estimates track the corresponding gold-standard vital signs.   

 

For the equivalency test, the null hypothesis is that a non-tolerable difference exists 

between the acoustic and gold standard estimates, and the alternative hypothesis is 

that the median difference is equivalent to 0 within the tolerance limits (at the 95% 

confidence level).  We chose a non-tolerable difference of +/- 5 bpm for both the HR 

and RR median differences.  We performed a bootstrap procedure for the equivalency 

test given that our data is non-normal and has few independent samples (at most 6 

independent pigs for a given anatomical location), though we have repeated samples 

for each pig at a given location.  For each location, we randomly sampled one 

measurement pair (acoustic estimate and gold-standard value) from each pig that had 

data for that location.  We computed the difference for the pair and took the median of 

the differences for all the pigs to create one bootstrapped datum.  We repeated this 
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procedure 10000 times to create a distribution of median difference errors, and then 

computed the 5 percentile and 95 percentile points.  If both the 5 percentile and 95 

percentile points lie within the tolerable difference region of +/- 5 bpm, we reject the null 

hypothesis (that the median is significantly different than 0 within the tolerance 

bounds) in favor of the alternative.  Note that 5 and 95 percentile points are used for a 

95% confidence level instead of 2.5 and 97.5 percentiles because both ends of the 

confidence interval must be within the tolerance bounds to reject the null hypothesis. 

  

A correlation test was also performed with a similar bootstrapped approach.  For each 

location, one measurement pair was taken for each pig.  The Pearson correlation 

among pairs was computed to create one bootstrapped datum.  We repeated this 

procedure 10000 times to create a distribution of correlations, and then computed the 

2.5 and 97.5 percentile points.  If the 2.5 to 97.5 percentile range did not include 0, then 

we reject the null hypothesis (that our acoustic measurements are uncorrelated with the 

gold standard) in favor of the alternative that data are correlated at the 95% confidence 

level. 

  

In the case of only one pig being available for the stomach with food condition, the 

samples were treated as independent and half the samples were randomly picked to 

create a bootstrap datum.  In one case, the gold-standard vital sign was constant, and 

consequently, we can only report on median difference error and not report a correlation 

value. 
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Figure Legends 
 
Figure 1:  Schematic of the experimental setup and representative dataset. The 
animal model is anesthetized and attached to a medical monitoring system that 
measures ECG, capnography, and photoplethysmography (PPG) waveforms 
simultaneously.  We built a custom voltage level-shifting circuit for each waveform, 
which outputs to a commercial A/D converter.  Two electret microphones, one controlled 
internally by the endoscope, the other attached superficially on the pig’s chest just 
above the heart, are also sending data to the A/D converter.  The final result is perfectly 
time-registered data streams for heart and lung function as well as the acoustic 
waveforms. Example concurrent physiological data measurements were taken from the 
proximal third of a porcine stomach including the acoustic waveform from our internal 
electret microphone, ECG, PPG (which indicates systemic oxygen perfusion levels and 
heart rate), capnography from expired CO2 content, and the acoustic waveform from the 
external microphone positioned above the heart.  (Note that the raw PPG data from the 
SurgiVet system seems to be inverted, and the raw capnography data appears to be the 
flow rate of CO2 , thus giving a first derivative of the more familiar capnogram 
waveform.) 

Figure 2: Schematic processing flow chart for HR and RR estimation from internal 
microphone data.  The signal is copied into a HR track and RR track and then analog 
filtered and down-sampled.  A sliding window computes an energy feature (see 
Methods) that is input to the average magnitude difference function (AMDF).  The RR is 
further low pass filtered with a 1 second Hamming window.  The first valley of the AMDF 
is the estimated vital sign. 

Figure 3: Example spectrogram and corresponding time course data of the 
internal acoustic signal measured in the proximal third of the stomach.  A majority 
of the signal energy is <50Hz.   

Figure 4: HR and RR estimation performance histograms for all data collected as 
a function of anatomical location.  The x-axis represents the absolute value of the 
percent error in a given 20s frame; the y-axis is the number of such frames normalized 
by the “Total Counts” (for each location and vital sign) used to build the histogram.  The 
AMDF valley-finding algorithm can trigger upon higher-order harmonics of the 
fundamental period, on noise, or on the incompletely removed heart rate period, giving 
percent errors concentrated at 50% and 100%; these errors can be easily addressed 
with more sophisticated AMDF algorithms or running median filters (see Discussion).   

Figure 5: Vital sign algorithm performance as a function of anatomical site. 
Median percentage error between PPG and capnography derived HR and RR and 
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acoustically derived HR and RR via our average magnitude difference function (AMDF)-
based analysis is reported at each measurement site. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 


